
Outline
Problem and Model

Coloring Trees

Network Computing and Efficient Algorithms
Vertex Coloring

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 1 / 28



Outline
Problem and Model

Coloring Trees

Some Basic Concepts

Distributed Systems
Many nodes: Many processors or entities are active in the system
at any moment.
Certain degrees of freedom: they have their own hard- and
software.
Share resources and information: nodes may communicate by
exchanging messages (point-point communication, wireless
broadcast communication), or by means of shared memory.
Coordination: nodes often work together to solve a global task; or
they are autonomous agents that have their own agenda and
compete for common resources.
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Some Basic Concepts

Some of the fundamental issues
Communication: Often communication cost dominates the cost
of local processing or storage.
Collaborative: How to coordinate a distributed system so that it
performs some task efficiently?
Fault-tolerance: A advantage of a distributed system is that even
in the presence of failures the system as a whole may survive.
Locality: Global information is not always needed to solve a task,
often it is sufficient if nodes talk to their neighbors.
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Some Basic Concepts

Some of the fundamental issues
Parallelism: How fast can you solve a task if you increase your
computational power?
Symmetry breaking: Sometimes some nodes need to be selected
to orchestrate computation or communication.
Synchronization: How to implement a synchronous algorithm in
an asynchronous environment?
Uncertainty: The nodes cannot know what other nodes are doing
at this exact moment, and the nodes are required to solve the tasks
at hand despite the lack of global knowledge.
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Some Basic Concepts

How to measure the performance?
Optimality of the solution (Efficacy)
Cost needed to find the solution (Efficiency)

Computation Complexity
Communication complexity

Robustness (with respect to failure)
Convergence speed (system changes)
Fairness?
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Vertex Coloring

Problem 1.1 (Vertex Coloring)

Given an undirected Graph G = (V,E), assign a color cv to each
vertex v ∈ V such that the following holds: e = (v,w) ∈ E⇒ cv 6= cw.

1 2

3 3

Figure: 3-colorable graph with a valid
coloring.

The application often asks
us to use few colors!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 7 / 28



Outline
Problem and Model

Coloring Trees

Vertex Coloring

Assumption 1.3 (Node Identifiers)
Each node has a unique identifier, e.g., its IP address. We usually
assume that each identifier consists of only logn bits if the system has
n nodes.

Remarks:
Sometimes we might even assume that the nodes exactly have
identifiers 1, ...,n.

It is easy to see that node identifiers (as defined in Assumption
1.3) solve the coloring problem 1.1, but using n colors is not
exciting. How many colors are needed is a well-studied problem.
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Some Notations

Definition 1.4 (Chromatic Number)

Given an undirected Graph G = (V,E), the chromatic number χ(G) is
the minimum number of colors to solve Problem 1.1.

Definition 1.6 (Degree)

The number of neighbors of a vertex v, denoted by δ (v), is called the
degree of v. The maximum degree vertex in a graph G defines the
graph degree ∆(G) = ∆.

1 2

3 3

χ(G) = 3,∆(G) = 3

1
2

2

2

2

χ(G) = 2,∆(G) = 4
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Centralized Greedy Algorithm

We can assume that colors are numbered as 1,2, ....
Initially, all nodes are not colored (marked as color 0)

ALGORITHM 1.5: GREEDY SEQUENTIAL()
1: while there is an uncolored vertex v do
2: color v with the minimal color (number) that does not conflict with

the already colored neighbors

Theorem 1.7
Algorithm 1.5 is correct and terminates in n steps. The algorithm uses
at most ∆+1 colors.

Upper Bound! Sometimes χ(G)� ∆+1
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Synchronous Distributed Algorithm

Definition 1.8 (Synchronous Distributed Algorithm)
In a synchronous distributed algorithm, nodes operate in synchronous
rounds. In each round, each node executes the following steps:

Send messages to neighbors in graph (of reasonable size).

Receive messages (that were sent by neighbors in step 1 of the
same round).

Do some local computation (of reasonable complexity).
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Centralized⇒ Distributed

One fundamental problem is Symmetry Breaking
When some nodes need to be selected to conduct computation or
communication, how to distinguish one vertex form another (or a
set of vertices from another set).

node IDs, but in some cases, nodes do not have unique IDs
(anonymous systems).
Random numbers
Vertex coloring, Maximal Independent Set...
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Distributed Version for Algorithm 1.5

ALGORITHM 1.9: REDUCE()
1: Assume that initially all nodes have IDs
2: Each node v executes the following code:
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends undecided to all neighbors
7: node v receives new decisions from neighbors
8: node v chooses the smallest admissible free color
9: node v informs all its neighbors about its choice
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Distributed Version for Algorithm 1.5

ALGORITHM 1.9: REDUCE()
1: Assume that initially all nodes have IDs
2: Each node v executes the following code:
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends undecided to all neighbors
7: node v receives new decisions from neighbors
8: node v chooses the smallest admissible free color
9: node v informs all its neighbors about its choice

Color the node with the high-
est ID in its one-hop uncol-
ored neighborhood.
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Example

v1

v2

v3

v4

v5

Round 0 (Initially)

v2

v5

v4

v3

v1
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Example

v1
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v3

v4

v5

v2

v5

v4

v3

v1

Round 4
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Performance Analysis

Definition 1.11 (Time Complexity)
For synchronous algorithms (as defined in 1.8) the time complexity is
the number of rounds until the algorithm terminates. The algorithm
terminates when the last node terminates.

Theorem 1.12
Algorithm 1.9 is correct and has time complexity n. The algorithm
uses at most ∆+1 colors.

Proof. Nodes choose colors that are different from their neighbors,
and no two neighbors choose concurrently. In each round at least one
node chooses a color, so we are done after at most n rounds.
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Hardness of Vertex Coloring

For general graphs, it is hard to compute the chromatic number.
approximating the chromatic number within n1−ε

For a planar graph,
whether it can be colored by 2 colors is polynomial time
decidable.
whether it can be colored by 3 colors is NP-complete.
it can be definitely colored by 4 colors (Four Color Theorem).
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Coloring Trees

Lemma 1.13
χ(Tree)≤ 2

Proof. Call some node the root of the tree. If the distance of a node to
the root is odd (even), color it 1 (0). An odd node has only even
neighbors and vice versa.
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Slow Tree Coloring

If we assume that each node knows its parent and children in a tree,
this constructive proof gives a very simple algorithm:

ALGORITHM 1.14: SLOW TREE COLORING()
1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message cp (from parent) then
4: node v chooses color cv = 1− cp
5: node v sends cv to its children (all neighbors except parent)
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Example

root

Round 0
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Example

root

Round 2
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root

Round 3
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Slow Tree Coloring

ALGORITHM 1.14: SLOW TREE COLORING()
1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message cp (from parent) then
4: node v chooses color cv = 1− cp
5: node v sends cv to its children (all neighbors except parent)

Time Complexity: height of the tree
Nice trees, e.g., balanced binary trees, have logarithmic height,
that is we have a logarithmic time complexity
However, the height can reach n.

Can we do better than the height of the tree, or logarithmic?
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Log-Star

Definition 1.16 (Log-Star)

∀x≤ 2 : log∗x := 1
∀x > 2 : log∗x := 1+ log∗(logx)

Log-star is an amazingly slowly growing function
Log-star of all the atoms in the observable universe (estimated to
be 1080) is 5.
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6-Color Algorithm

Idea:
Interpret vertex ID as color (we can assume the IDs are 1,2, ,n)
Reduce the number of colors based on vertex ID manipulations

ALGORITHM 1.17: 6-COLOR()
1: Assume that initially the nodes have IDs of size logn bits
2: The root assigns itself the label 0
3: Each other node v executes the following code
4: send own color cv to all children
5: repeat
6: receive color cp from parent
7: interpret cv and cp as bit-strings
8: let i be the index of the smallest bit where cv and cp differ
9: the new label is i (as bitstring) followed by the ith bit of cv

10: send cv to all children
11: until cw ∈ {0, ...,5} for all nodes w
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Example

Grand-parent
Parent
Child

1010010000

0010110000

0110010000

We count the bit positions
from right to left, starting
with 0

Round 1

0010110000
1010010000
0110010000
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Example

Grand-parent
Parent
Child

01010

10010

10001

Round 2

0010110000⇒ 10010 (assumed)
1010010000⇒ 01010
0110010000⇒ 10001
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Example

Grand-parent
Parent
Child

111

001

Round 3

0010110000⇒ 10010⇒ ...
1010010000⇒ 01010⇒ 111
0110010000⇒ 10001⇒ 001
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6-Color Algorithm

ALGORITHM 1.17: 6-COLOR()
1: Assume that initially the nodes have IDs of size logn bits
2: The root assigns itself the label 0
3: Each other node v executes the following code
4: send own color cv to all children
5: repeat
6: receive color cp from parent
7: interpret cv and cp as bit-strings
8: let i be the index of the smallest bit where cv and cp differ
9: the new label is i (as bitstring) followed by the ith bit of cv

10: send cv to all children
11: until cw ∈ {0, ...,5} for all nodes w

In each round, the parent and child have different colors (why?).
The largest color used shrinks dramatically in each round:

the length of a nodes ID: not less than i→ log i+1
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6-Color Algorithm

Theorem 1.18
Algorithm 1.17 terminates in log∗ n+ k time, when k is a constant
independent of n.

How do a node knows that all nodes have colors in range [0−5]?

Why colors 6,7... will not appear in the final solution?

What happens if we do not know the root of the tree?

Why using colors from 0−5? Can we have a smaller # of colors?

Actually, with more tricks, we can color a tree with 3 colors in
time O(log∗ n)

For general graphs, we will study another distributed coloring
technique later.
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Summary

For Vertex Coloring:
We can color it in time O(n) using ∆+1 colors.
For Ring graph, the running time could be further improved to
O(log∗ n).
For general graph, the running time could be improved to
O(log(n)).

For Tree Coloring:
We can color it using 3 colors in time about O(log∗ n).
There is a simple method that can color it using 2 colors in time
O(h), height of the tree —- assuming we know the root of the
tree.

For Other Special Graphs
Growth bounded graphs: time complexity O(log∗ n).

A graph where for each r-hop neighborhood of any node, the size
of MIS is bounded by a function f(r). Function f is a given
polynomial function.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 27 / 28



Outline
Problem and Model

Coloring Trees

Reference

Book:
Leonid Barenboim and Michael Elkin, Distributed Graph
Coloring: Fundamentals and Recent Developments, Synthesis
Lectures on Distributed Computing Theory, July 2013.

Basic technique of the log-star algorithm
R. Cole and U. Vishkin. Deterministic coin tossing and
accelerating cascades: micro and macro techniques for designing
parallel algorithms. In STOC, 1986.

Some results on other special graphs, e.g., graphs with a constant
degree, growth bounded graphs

Andrew V. Goldberg and Serge A. Plotkin. Parallel (+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241-245,
June 1987.
Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In PODC, 2005
N. Linial. Locality in Distributed Graph Algorithms. SIAM
Journal on Computing, February 1992.

Some results on general graphs
Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In SPAA, 2009
Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed
(delta+1)-coloring in linear (in delta) time. SIAM J. Comput.,
2014.
Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed
algorithms for the lovasz local lemma and graph coloring. In
PODC 2014.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 28 / 28


	Problem and Model
	Coloring Trees

